
Shifting Inequality and 
Recovery of Sparse Signals

Lie Wang



Introduction

The problem of recovering a high 
dimensional sparse signal based on a 
small number of measurements has 
attracted much attention recently.
Model selection.
Construction approximation.
Compressive sensing.



Introduction

Main model:

F is an n by p matrix, where n could be 
much less than p.
Z is the vector of measurement error.
βis the unknown vector of coefficients, 
our goal is to reconstruct β.



Introduction

The error vector z can either be zero 
(noiseless case), bounded, or Gaussian 
(i.i.d. standard normal).
β is assumed to be sparse, usually in 
terms of L0 norm (number of nonzero 
coefficients).
L0 minimization is computationally 
undoable.



Methods

In many cases the sparse solution can 
be found through L1 minimization.
This L1 minimization problem has been 
studied, for example, in Fuchs (2004), 
Candes and Tao (2005) and Donoho
(2006).



Methods

Noisy case, two L1 minimization methods.
Under L2 constraint of residuals.

Dantzig selector, by Candes and Tao



Conditions

It is clear that regularity conditions are 
needed in order for these methods to be 
well behaved. Near orthogonal condition.

Restricted Isometry Property (RIP).

Candes and Tao considered sparse 
recovery problems in the RIP framework .



Conditions

k-restricted isometry constant δk of F

for any k sparse vector c. 
k k’-restricted orthogonality constant θk,k’

for any k and k’ sparse vectors c, c’ with 
disjoint support.



Conditions

Different conditions on δ and θ have 
been used in the literature. For example, 
Candes and Tao (2007) imposes

Candes (2008) uses

Actually, the second condition is stronger.



Noiseless Case

Understanding the noiseless case is not 
only of interest on its own right, it also 
provides deep insight into the problem of 
reconstructing sparse signals in the 
noisy case.
In this case, we need to recover the 
sparse signal exactly.



Noiseless Case

(Candes and Tao) Let F be an n*p matrix. 
Suppose k>1 satisfies

Letβbe a k-sparse vector and Y=Fβ. 
Then β is the unique minimizer to



Unified Argument

We found that all those results can be 
derived from the following elementary 
inequality (called shifting inequality):
Suppose r≤q ≤3r, and 

then



Noiseless Case

Our result:
Let F be an n*p matrix. Suppose k>1 
satisfies

and Y=Fβ. Then ,the minimizer to 

satisfies



Noiseless Case

Suppose the largest k element of βare the first k 
elements. Suppose

We will use the following simple result:
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Cutting the error into pieces

Cutting the error vector into pieces.

Bound           by
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Cutting the error into pieces

First

On the other hand
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Bounded Noise Case

Suppose                         and z belongs to 
some bounded set B.
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Bounded Noise Case

Our results improve Candes and Tao 
(2005, 2007) in the first case. 

And improve Donoho, Elad and 
Temlyakov (2006) in the second case.



Gaussian Noise Case

We can apply the previous results to the 
Gaussian noise case.
With high probability, the Gaussian noise 
vector belongs to                                   
with λ=
With high probability, the Gaussian noise 
vector belongs to                              with       
ε=                        .



Gaussian Noise Case

We have the following results:
With probability

With probability 



Oracle Inequality

We can also derive the oracle type of 
results.

Suppose     is the minimizer to



Oracle Inequality

Then with high probability

The idea of the proof is still the same, 
the application of our elementary 
inequality.



MIC

Mutual Incoherent 

Instead of using RIC, we can put conditions on 
mutual incoherent. This type of condition is 
generally stronger, but much easier to check.
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MIC

This type of conditions has been studied. 
For example, In Donoho, Elad, and 
Temlyakov (2006),

In Tseng (2009),



MIC

We can improve the condition to

For the L2 bounded noise case

For the L∞ bounded noise case



Future Work

Further improve the condition, what is 
the best? 
For MIC, without any other constraint on 
F, our condition cannot be improved.
For RIC, there is still room for 
improvement.
Other type of conditions.


